login
Hints
(Greetings from The On-Line Encyclopedia of Bongard Problems!)
Search: +meta:BP1179
Displaying 1-8 of 8 results found.     page 1
     Sort: id      Format: long      Filter: (all | no meta | meta)      Mode: (words | no words)
BP318 The numbers of dots can be put into a sequence of consecutive numbers vs. not so.
(edit; present; nest [left/right]; search; history)
CROSSREFS

Adjacent-numbered pages:
BP313 BP314 BP315 BP316 BP317  *  BP319 BP320 BP321 BP322 BP323

KEYWORD

nice, traditional

CONCEPT size_increase_decrease (info | search),
iteration (info | search),
number (info | search),
ordinal_orering (info | search),
dot (info | search),
sequence (info | search)

WORLD

dot_clusters [smaller | same | bigger]

AUTHOR

Aaron David Fairbanks

BP840 Any transformation (rotation or flip) that sends one L to another L sends each L to some other L versus not so.
(edit; present; nest [left/right]; search; history)
COMMENTS

Restriction of BP841 to these axis-aligned L-shapes.


Left examples represent subgroups of the dihedral group D4.

CROSSREFS

Adjacent-numbered pages:
BP835 BP836 BP837 BP838 BP839  *  BP841 BP842 BP843 BP844 BP845

KEYWORD

traditional

WORLD

zoom in left | zoom in right

AUTHOR

Aaron David Fairbanks

BP841 Any relationship that exists between one object and another exists between each object and some other versus not so.
(edit; present; nest [left/right]; search; history)
COMMENTS

For example, in a picture on the left of this Bongard Problem, if object A turned 90 degrees clockwise is object B, then there is also an object C which is B turned 90 degrees clockwise.


Positioning is irrelevant.


In all images, any pair of objects ought to be related in a unique (most intuitive) way. Furthermore, one object is not allowed to be related to two distinct objects by the same relationship. Even for images on the right, each analogy of objects A:B::C:_ should have one clear answer, although that object is perhaps missing.


Relationships described by "[undo-able action] applied to ___ is ___" will always form what in mathematics is called a "group". These relationships can be chained one after another to form a total relationship (turn 90 degrees clockwise + turn 90 degrees clockwise = turn 180 degrees), and each relationship has an "inverse" relationship that undoes it and vice versa (turn 90 degrees clockwise + turn 90 degrees counterclockwise = do nothing).

(Moreover actions are by nature associative.)


Sometimes the relationships in a picture wouldn't be consistently read the same way by everybody. For example, if there is a picture showing an L shape next to all vertical and horizontal reflections and 90 degree rotations of it, somebody might read

⅃ L

to be the same relationship as

┗━

┏━.

Meanwhile, someone else might think ⅃ L should be called the same relationship as ┗━ ━┛. There is a conflict between "flipping over the vertical line within the letter 'L'" and "flipping over a vertical line in the background space."


Likewise in any illustration of related objects (as in this Bongard Problem) people might interpret [the transformation that sends A to B] as analogous to [the transformation that sends [transformation x applied to A] to [transformation x applied to B] ].


A "commutative" (also called "abelian") group is a group in which there is no difference between the two in each case. Displayed using pictures like the ones in this Bongard Problem, only commutative groups of relationships can be expected to be read consistently by people.

REFERENCE

https://en.wikipedia.org/wiki/Group_(mathematics)

https://en.wikipedia.org/wiki/Abelian_group

CROSSREFS

See BP842 and BP840 for versions about particular groups.

Adjacent-numbered pages:
BP836 BP837 BP838 BP839 BP840  *  BP842 BP843 BP844 BP845 BP846

KEYWORD

nice, rules, miniworlds

WORLD

zoom in left | zoom in right

AUTHOR

Aaron David Fairbanks

BP842 Any permutation of positions that sends one string of symbols to another sends each string of symbols to some other versus not so.
(edit; present; nest [left/right]; search; history)
COMMENTS

Restriction of BP841 to permutations.

CROSSREFS

Adjacent-numbered pages:
BP837 BP838 BP839 BP840 BP841  *  BP843 BP844 BP845 BP846 BP847

KEYWORD

hard, contributepairs, traditional

CONCEPT permutation (info | search)

WORLD

zoom in left | zoom in right

AUTHOR

Aaron David Fairbanks

BP1135 Each component can be assigned its own layer in the arrangement vs. there is no equivalent way of dividing the arrangement into layers.
(edit; present; nest [left/right]; search; history)
COMMENTS

Put differently, if the examples are imagined to be arrangements of rigid sticks/hoops/etc resting on a flat surface, positive examples include sticks/hoops/etc that could be picked up without disturbing the other objects.

CROSSREFS

Adjacent-numbered pages:
BP1130 BP1131 BP1132 BP1133 BP1134  *  BP1136 BP1137 BP1138 BP1139 BP1140

KEYWORD

precise

AUTHOR

Leo Crabbe

BP1138 Each attribute is shared by every group or none vs. some attribute is shared by exactly two groups
(edit; present; nest [left/right]; search; history)
COMMENTS

Attributes are shading, shape, and number.

There are always three groups.

This problem is related to the card game Set.

CROSSREFS

Adjacent-numbered pages:
BP1133 BP1134 BP1135 BP1136 BP1137  *  BP1139 BP1140 BP1141 BP1142 BP1143

KEYWORD

nice, precise, allsorted, notso, preciseworld

CONCEPT all (info | search),
number (info | search),
same (info | search),
two (info | search),
three (info | search)

AUTHOR

William B Holland

BP1157 The order in which the objects in the top half are combined to make the object in the lower half matters vs. not so.
(edit; present; nest [left/right]; search; history)
COMMENTS

Operations depicted in right-sorted examples are called "commutative".


"Order matters" here means that if the objects in the top half were to switch places, the output would look different.

REFERENCE

https://en.wikipedia.org/wiki/Commutative_property

CROSSREFS

Adjacent-numbered pages:
BP1152 BP1153 BP1154 BP1155 BP1156  *  BP1158 BP1159 BP1160 BP1161 BP1162

KEYWORD

nice, abstract, unwordable, notso, structure, rules, miniworlds

CONCEPT function (info | search)

AUTHOR

Leo Crabbe

BP1175 Each symbol appears once in any given row or column vs. not so.
(edit; present; nest [left/right]; search; history)
REFERENCE

https://en.wikipedia.org/wiki/Latin_square

CROSSREFS

Adjacent-numbered pages:
BP1170 BP1171 BP1172 BP1173 BP1174  *  BP1176 BP1177 BP1178 BP1179 BP1180

KEYWORD

precise, traditional, grid, miniworlds, dithering

AUTHOR

Leo Crabbe

    page 1

Welcome | Solve | Browse | Lookup | Recent | Links | Register | Contact
Contribute | Keywords | Concepts | Worlds | Ambiguities | Transformations | Invalid Problems | Style Guide | Goals | Glossary