Search: author:Aaron David Fairbanks
|
|
BP1158 |
| Bongard Problems in which each example communicates a rule vs. other Bongard Problems. |
|
| |
|
|
COMMENTS
|
Left-sorted Bongard Problems have the keyword "rules" on the OEBP.
In the typical "rules" Bongard Problem, it is possible to come up with many convoluted rules that fit each example, but the intended interpretation is the only simple and obvious one.
Since it is difficult to communicate a rule with little detail, "rules" Bongard Problems are usually infodense.
Typically, each example is itself a bunch of smaller examples that all obey the rule. It is the same as how a Bongard Problems relies on many examples to communicate rules; likely just one example wouldn't get the answer across.
On the other hand, in BP1157 for example, each intended rule is communicated by just one example; these rules have to be particularly simple and intuitive, and the individual examples have to be complicated enough to communicate them.
Often, each rule is communicated by showing several examples of things satisfying it. (See keywords left-narrow and right-narrow.) Contrast Bongard Problems, which are more communicative, by showing some examples satisfying the rule and some examples NOT satisfying the rule.
A "rules" Bongard Problem is often collective. Some examples may admit multiple equally plausible rules, and the correct interpretation of each example only becomes clear once the solution is known. The group of examples together improve the solver's confidence about having understood each individual one right.
It is common that there will be one or two examples with multiple reasonable interpretations due to oversight of the author. |
|
CROSSREFS
|
All meta Bongard Problems are "rules" Bongard Problems.
Many other Bongard-Problem-like structures seen on the OEBP are also about recognizing a pattern. (See keyword structure.)
"Rules" Bongard Problems are abstract, although the individual rules in them may not be abstract. "Rules" Bongard Problems also usually have the keyword creativeexamples.
Adjacent-numbered pages:
BP1153 BP1154 BP1155 BP1156 BP1157  *  BP1159 BP1160 BP1161 BP1162 BP1163
|
|
KEYWORD
|
fuzzy, meta (see left/right), links, keyword, left-self, rules
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
|
BP1152 |
| Solution involves discrete quantity vs. solution involves continuous quantity. |
|
| |
|
|
|
|
|
BP1150 |
| Even BP number on the OEBP vs. odd BP number on the OEBP. |
|
| |
|
|
COMMENTS
|
This was created as an example for BP1073 (left-it versus right-it). |
|
CROSSREFS
|
Adjacent-numbered pages:
BP1145 BP1146 BP1147 BP1148 BP1149  *  BP1151 BP1152 BP1153 BP1154 BP1155
|
|
KEYWORD
|
less, meta (see left/right), links, oebp, example, left-self, presentationmatters, right-it, experimental, left-listable, right-listable
|
|
CONCEPT
|
even_odd (info | search)
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
|
BP1149 |
| Number in the Nth box (from the left) is how many numbers appear N times vs. not so. |
|
| |
|
|
CROSSREFS
|
Inspired by BP1148.
Adjacent-numbered pages:
BP1144 BP1145 BP1146 BP1147 BP1148  *  BP1150 BP1151 BP1152 BP1153 BP1154
|
|
KEYWORD
|
nice, precise, unwordable, notso, handed, leftright, left-narrow, sequence, preciseworld, left-listable, right-listable
|
|
CONCEPT
|
self-reference (info | search)
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
|
BP1144 |
| Bongard Problems where making any small change to any sorted example renders the example unsortable vs. other Bongard Problems. |
|
| |
|
|
|
|
|
BP1143 |
| Bongard Problems where a visual addition (not erasing) can be made to any example such that it would still fit in the Bongard Problem vs. Bongard Problems where some example(s) are "maximal" (cannot be added to). |
|
| |
|
|
|
|
|
BP1130 |
| Start with a rectangle subdivided further into rectangles and shrink the vertical lines into points vs. the shape does not result from this process. |
|
| ?
 |
|
|
|
COMMENTS
|
The description in terms of rectangles was noted by Sridhar Ramesh when he solved this.
All examples in this Bongard Problem feature arced line segments connected at endpoints; these segments do not cross across one another and they are nowhere vertical; they never double back over themselves in the horizontal direction.
Furthermore, in each example, there is a single leftmost point and a single rightmost point, and every segment is part of a path bridging between them. So, there is a topmost total path of segments and bottommost total chain of segments.
Any picture on the left can be turned into a subdivided rectangle by the process of expanding points into vertical lines.
Here is another answer:
"Right examples: some junction point has a single line coming out from either the left or right side."
If there is some junction point with only a single line coming out from a particular side, the point cannot be expanded into a vertical segment with two horizontal segments bookending its top and bottom (as it would be if this were a subdivision of a rectangle).
And this was the original, more convoluted idea of the author:
"Start with a string along the top path. Sweep it down, region-by-region, until it lies along the bottom path. The string may only enter a region when it fully covers that region's top edge and likewise it must exit by fully covering the bottom edge. Only in left images can this process be done so that no segment of the string ever hesitates."
Quite convoluted when spelled out in detail, but not terribly complicated to imagine visually. (See the keyword unwordable.)
The string-sweeping answer is the same as the rectangle answer because a rectangle represents the animation of a string throughout an interval of time. (A horizontal cross-section of the rectangle represents the string, and the vertical position is time.) Distorting the rectangle into a new shape is the same as animating a string sweeping across that new shape.
In particular, shrinking vertical lines of a rectangle into points means just those points of the string stay still as the string sweeps down.
The principle that horizontal lines subdividing the original rectangle become the segments in the final picture corresponds to the idea that the string must enter or exit a single region all at once. |
|
CROSSREFS
|
BP1129 started as an incorrect solution for this Bongard Problem. Anything fitting right in BP1130 fits right in BP1129.
Adjacent-numbered pages:
BP1125 BP1126 BP1127 BP1128 BP1129  *  BP1131 BP1132 BP1133 BP1134 BP1135
|
|
KEYWORD
|
hard, unwordable, solved
|
|
CONCEPT
|
topological_transformation (info | search), imagined_motion (info | search)
|
|
WORLD
|
[smaller | same | bigger]
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
|
BP1129 |
| An oval is sorted left; shapes are sorted left when they can be built out of others sorted left by A) joining side by side (at a point) or B) joining one on top of the other (joining one's entire bottom edge to the other's entire top edge). |
|
| |
|
|
| |
|
|
|
|
|
|
|
|