Search: -meta:BP549
|
Displaying 11-16 of 16 results found.
|
( prev ) page 1 2
|
|
Sort:
id
Format:
long
Filter:
(all | no meta | meta)
Mode:
(words | no words)
|
|
|
|
|
BP973 |
| Transitive vs. non-transitive relations between the red and blue circles. |
|
| |
|
|
COMMENTS
|
Each example in this Bongard Problem consists of mini-panels containing the same arrangement of circles (ignoring colouring). Each mini-panel has a single circle highlighted in red, and possibly some circles highlighted in blue. A strict rule for this Bongard Problem could be something like "If a circle is blue in one mini-panel and red in a second mini-panel, then there are no blue circles in the second mini-panel that weren't already blue in the first mini-panel." The relation interpretation is that a circle is related to the red circle if and only if it is coloured blue. |
|
CROSSREFS
|
Adjacent-numbered pages:
BP968 BP969 BP970 BP971 BP972  *  BP974 BP975 BP976 BP977 BP978
|
|
KEYWORD
|
convoluted, color, infodense, rules
|
|
AUTHOR
|
Jago Collins
|
|
|
|
|
BP975 |
| Symmetric vs. Asymmetric relations between the red and blue circles. |
|
| |
|
|
COMMENTS
|
Each example in this Bongard Problem consists of mini-panels containing the same arrangement of circles (ignoring colouring). Each mini-panel has a single circle highlighted in red, and possibly some circles highlighted in blue. A strict rule for this Bongard Problem could be something like "If a circle is blue in one mini-panel and red in a second mini-panel, then the red circle from the first mini-panel is blue in the second mini-panel." The relation intepretation is that a circle is related to the red circle if and only if it is coloured blue. BP973 is a similar problem. |
|
CROSSREFS
|
Adjacent-numbered pages:
BP970 BP971 BP972 BP973 BP974  *  BP976 BP977 BP978 BP979 BP980
|
|
KEYWORD
|
convoluted, color, infodense, rules
|
|
AUTHOR
|
Jago Collins
|
|
|
|
|
BP981 |
| Grid of analogies vs. different kind of rule. |
|
| |
|
|
COMMENTS
|
On the left, each row and column could be labeled by a certain object or concept; on the right this is not so.
More specifically: on the left, each row and each column is associated with a certain object or concept; there is a rule for combining rows and columns to give images; it would be possible without changing the rule to extend with new rows/columns or delete/reorder any existing columns. On the right, this is not so; the rule might be about how the images must relate to their neighbors, for example.
All examples show grids of squares with an image in each square, such that there is some "rule" the images within the grid obey.
Left examples are a generalized version of the analogy grids seen in BP361. Any analogy a : b :: c : d shown in a 2x2 grid will fit on the left here.
To word the solution with mathematical jargon, "defines a (simply described) map from the Cartesian product of two sets vs. not so." Another equivalent solution is "columns (alternatively, rows) illustrate a consistent set of one-input operations." It is always possible to imagine the columns as inputs and the rows as operations and vice versa.
There is a trivial way in which any example can be interpreted so that it fits on the left side: imagine each row is assigned the list of all the squares in that row and each column is assigned its number, counting from the left. But each grid has a clear rule that is simpler than this. |
|
CROSSREFS
|
BP1258 is a similar idea: "any square removed could be reconstructed vs. not." Examples included left here usually fit left there, but some do not e.g. EX9998.
See BP979 for use of similar structures but with one square removed from the grid.
Adjacent-numbered pages:
BP976 BP977 BP978 BP979 BP980  *  BP982 BP983 BP984 BP985 BP986
|
|
KEYWORD
|
nice, convoluted, unwordable, notso, teach, structure, rules, grid, miniworlds
|
|
CONCEPT
|
analogy (info | search)
|
|
WORLD
|
grid_of_images_with_rule [smaller | same | bigger] zoom in left (grid_of_analogies)
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
|
BP990 |
| The center of mass can "see" (in straight lines) all points within the shape vs. the center of mass is not located in a region where it can see (in straight lines) all points. |
|
| |
|
|
| |
|
|
|
|