login
Hints
(Greetings from The On-Line Encyclopedia of Bongard Problems!)
Search: +ex:BP1137
Displaying 1-5 of 5 results found.     page 1
     Sort: id      Format: long      Filter: (all | no meta | meta)      Mode: (words | no words)
BP504 BP pages on the OEBP in need of more examples vs. BP pages with a list of examples that should not be altered.
BP860
BP865
BP928
BP969
BP970
BP988
BP989
BP993
BP994
BP1001
BP1082
BP1085
BP1091
BP1098
BP1137
BP1206
BP1207
BP1208
BP1209
BP1210
BP1211
BP1213
BP1214
BP1215
BP1216
BP1217
BP1218
BP1220
BP1221
BP1222
BP1223
BP1224
BP1226
BP1227
BP1228

. . .

BP1
BP2
BP3
BP4
BP5
BP6
BP7
BP8
BP9
BP10
BP11
BP12
BP13
BP14
BP15
BP16
BP17
BP18
BP19
BP20
BP21
BP22
BP23
BP24
BP25
BP26
BP27
BP28
BP29
BP30
BP32
BP33
BP34
BP35
BP36

. . .

(edit; present; nest [left/right]; search; history)
COMMENTS

Left-sorted Bongard Problems have the keyword "stub" on the OEBP.

Right-sorted Bongard Problems have the keyword "finished" on the OEBP.


Users are not able to add or remove examples from Problems tagged "finished." (This is unusual; most Bongard Problems on the OEBP can be expanded indefinitely by users.)


A "finished" Bongard Problem will always admit the alternative, convoluted solution "is [left example 1] OR is [left example 2] OR . . . OR is [last left example] vs. is [right example 1] OR is [right example 2] OR . . . OR is [last right example]".

CROSSREFS

Bongard's original Problems are tagged "finished."

Adjacent-numbered pages:
BP499 BP500 BP501 BP502 BP503  *  BP505 BP506 BP507 BP508 BP509

KEYWORD

meta (see left/right), links, keyword, oebp, presentationmatters, left-finite, right-finite, instruction

WORLD

bppage [smaller | same | bigger]

AUTHOR

Aaron David Fairbanks

BP508 Bongard Problems with precise definitions vs. Bongard Problems with vague definitions.
BP1
BP3
BP4
BP6
BP13
BP23
BP31
BP67
BP72
BP103
BP104
BP210
BP292
BP312
BP321
BP322
BP324
BP325
BP329
BP334
BP344
BP348
BP367
BP368
BP376
BP384
BP386
BP389
BP390
BP391
BP523
BP527
BP557
BP558
BP559

. . .

BP2
BP9
BP10
BP11
BP12
BP14
BP62
BP119
BP148
BP364
BP393
BP505
BP508
BP509
BP511
BP524
BP571
BP812
BP813
BP847
BP865
BP894
BP895
BP939
BP1002
BP1111
BP1158
(edit; present; nest [left/right]; search; history; show unpublished changes)
COMMENTS

Bongard Problems sorted left have the keyword "precise" on the OEBP.

Bongard Problems sorted right have the keyword "fuzzy" on the OEBP.


In an precise Bongard Problem, any relevant example is either clearly sorted left, clearly sorted right, or clearly not sorted.

(All relevant examples clearly sorted either left or right is the keyword allsorted.)


How can it be decided whether or not a rule is precise? How can it be decided whether or not a rule classifies all "examples that are relevant"? There needs to be another rule to determine which examples the original rule intends to sort. Bongard Problems by design communicate ideas without fixing that context ahead of time. The label "precise" can only mean a Bongard Problem's rule seems precise to people who see it. (This "precise vs. fuzzy" Bongard Problem is fuzzy.)


In an precise "less than ___ vs. greater than ___" Bongard Problem (keyword spectrum), the division between the sides is usually an apparent threshold. For example, there is an intuitive threshold between acute and obtuse angles (see e.g. BP292).


As a rule of thumb, do not consider imperfections of hand drawn images (keyword ignoreimperfections) when deciding whether a Bongard Problem is precise or fuzzy. Just because one can draw a square badly does not mean "triangle vs. quadrilateral" (BP6) should be labelled fuzzy; similar vagueness arises in all hand-drawn Bongard Problems. (For Bongard Problems in which fine subtleties of drawings, including small imperfections, are meant to be considered, use the keyword perfect.)


Sometimes the way a Bongard Problem would sort certain examples is an unsolved problem in mathematics. (See e.g. BP820.) There is a precise criterion that has been used to verify each sorted example fits where it fits (some kind of mathematical proof); however, where some examples fit is still unknown. Whether or not such a Bongard Problem should be labelled "precise" might be debated.

(Technical note: some properties are known to be undecidable, and sometimes the decidability itself is unknown. See https://en.wikipedia.org/wiki/Decision_problem .)

(See the keyword proofsrequired.)

One way to resolve this ambiguity is to define "precise" as meaning that once people decide where an example belongs for a reason, they will all agree about it.


Sometimes the class of all examples in a Bongard Problem is imprecise, but, despite that, the rule sorting those examples is precise. Say, for some potential new example, it is unclear whether it should be included in the Bongard Problem at all, but, if it were included, it would be clear where it should be sorted (or that it should be left unsorted). A Bongard Problem like this can still be tagged "precise".

(If all examples are clearly sorted except for some example for which it is unclear whether it belongs to the class of relevant examples, the situation becomes ambiguous.)

On the other hand, sometimes the class of all examples is very clear, with an obvious boundary. (Keyword preciseworld.)


There is a subtle distinction to draw between Bongard Problems that are precise to the people making them and Bongard Problems that are precise to the people solving them. A Bongard Problem (particularly a non-allsorted one) might be labeled "precise" on the OEBP because the description and the listed ambiguous examples explicitly forbid sorting certain border cases; however, someone looking at the Bongard Problem without access to the OEBP page containing the definition would not be aware of this. It may or may not be obvious that certain examples were intentionally left out of the Bongard Problem. A larger collection of examples may make it more clear that a particularly blatant potential border case was left out intentionally.

CROSSREFS

See BP876 for the version with pictures of Bongard Problems instead of links to pages on the OEBP.

See both and neither for specific ways an example can be classified as unsorted in an "precise" Bongard Problem.

Adjacent-numbered pages:
BP503 BP504 BP505 BP506 BP507  *  BP509 BP510 BP511 BP512 BP513

KEYWORD

fuzzy, meta (see left/right), links, keyword, right-self, sideless

WORLD

bp [smaller | same | bigger]

AUTHOR

Aaron David Fairbanks

BP571 Bongard Problems that require mathematical understanding to solve vs. other Bongard Problems.
BP171
BP203
BP319
BP326
BP327
BP333
BP334
BP335
BP339
BP340
BP341
BP344
BP369
BP370
BP378
BP380
BP381
BP382
BP384
BP505
BP560
BP562
BP563
BP569
BP576
BP788
BP790
BP791
BP797
BP801
BP806
BP809
BP810
BP811
BP813

. . .

(edit; present; nest [left/right]; search; history)
COMMENTS

Left examples have the keyword "math" on the OEBP.


Although everything is arguably related to math, these BP solutions include content that people don't inherently understand without learning at least some mathematics.


Left examples do not technically have "culturally-dependent" content (keyword culture), but knowledge and previous learning plays a role in how easy they are to solve.

CROSSREFS

Adjacent-numbered pages:
BP566 BP567 BP568 BP569 BP570  *  BP572 BP573 BP574 BP575 BP576

KEYWORD

fuzzy, meta (see left/right), links, keyword

WORLD

bp [smaller | same | bigger]

AUTHOR

Aaron David Fairbanks

BP1125 BP pages on the OEBP (with a criterion for sorting examples that in some cases may be very difficult to work out) where users should be certain (i.e. know a proof) about how examples are sorted vs. users can include examples on a side as long as nobody has seen a reason it does not fit there.
BP335
BP344
BP532
BP850
BP1119
BP1137
BP1200
BP1245
(edit; present; nest [left/right]; search; history)
COMMENTS

Left-sorted Bongard Problems have the keyword "proofsrequired" on the OEBP.

Right-sorted Bongard Problems have the keyword "noproofs" on the OEBP.


For every "noproofs" Bongard Problem there could be made a stricter "proofsrequired" version. This stricter version will be hardsort.


Deciding to make a Bongard Problem noproofs adds subjectivity to the sorting of examples (keyword subjective).



One interpretation of topology (a subject of mathematics -- see https://en.wikipedia.org/wiki/Topology ) is that a topology describes the observability of various properties. (The topological "neighborhoods" of a point are the subsets one could determine the point to be within using a finite number of measurements.) The analogue of restricting to just the cases where a property is observably true (i.e. "proofsrequired") corresponds to taking the topological "interior" of that property.



TO DO: It may be better to split each of these keywords up into two: "left-proofsrequired", "right-proofsrequired", "left-noproofs", "right noproofs".


CROSSREFS

See keyword hardsort.


Bongard Problems that are left-unknowable or right-unknowable will have to be "noproofs".

Adjacent-numbered pages:
BP1120 BP1121 BP1122 BP1123 BP1124  *  BP1126 BP1127 BP1128 BP1129 BP1130

EXAMPLE

In "proofsrequired" BP335 (shape tessellates the plane vs. shape does not tessellate the plane), shapes are only put in the Bongard Problem if they are known to tessellate or not to tessellate the plane. A "noproofs" version of this Bongard Problem would instead allow a shape to be put on the right if it was just (subjectively) really hard to find a way of tessellating the plane with it.

KEYWORD

meta (see left/right), links, keyword, oebp, instruction

AUTHOR

Aaron David Fairbanks

BP1190 BPs with a precisely defined pool of examples vs. BPs with an imprecisely defined pool of examples.
BP3
BP6
BP13
BP103
BP292
BP312
BP329
BP334
BP376
BP384
BP386
BP390
BP391
BP557
BP558
BP560
BP569
BP576
BP788
BP856
BP891
BP897
BP898
BP905
BP922
BP932
BP942
BP945
BP949
BP956
BP961
BP962
BP988
BP989
BP993

. . .

(edit; present; nest [left/right]; search; history)
COMMENTS

Left-sorted Bongard Problems are tagged with the keyword "preciseworld" on the OEBP.


The keyword "preciseworld" basically means: if a new Bongard Problem were created to sort whether or not examples fit in the pool of examples in the original Bongard Problem, it would be tagged precise.


For a Bongard Problem fitting left, the intended class of examples sorted by the Bongard Problem is clear-cut.

For a Bongard Problem fitting right, there isn't any obvious boundary to take as delimiting the pool of potential examples. There is an imprecise fading of relevancy rather than a natural cutoff point.



Sometimes there are specific notable cases of potential examples for which there is ambiguity about whether they belong.


For example, the empty square (zero dots) has been left out of BP989. This is perhaps the only obvious example that is ambiguous as to whether it should be considered as belonging to the pool of examples shown in the Bongard Problem (or any similar dot-counting Bongard Problem).

(There would be no ambiguity if it were actually included in the Bongard Problem.)

(Whether or not zero seems like an obvious example also has a cultural component (see culture); someone who is not accustomed think of zero as a number might not see this as ambiguous at all.)

Larger pools of examples make the absence of notable border cases like this more conspicuous and intentional-seeming. (See also discussion at left-narrow.) But expanding the pool of examples cannot resolve certain border cases: if the rule of the Bongard Problem by nature leaves unsorted a potential example that is a border case for even fitting in with the rest of the examples, its absence doesn't communicate anything; whether it belongs with the pool of examples remains ambiguous.



It is tempting to make another another "allsortedworld" analogous to allsorted. But the pool of relevant examples fitting in a Bongard Problem is like a Bongard Problem with only one side: a collection satisfying some rule. Would there be any difference between precise and allsorted for a Bongard Problem with only one side?

CROSSREFS

Adjacent-numbered pages:
BP1185 BP1186 BP1187 BP1188 BP1189  *  BP1191 BP1192 BP1193 BP1194 BP1195

EXAMPLE

Bongard Problems featuring generic shapes ( https://oebp.org/search.php?q=world:fill_shape ) have not usually been labelled "preciseworld". (What counts as a "shape"? Can the shapes be fractally complicated, for example? What exactly are the criteria?) Nonetheless, these Bongard Problems are frequently precise.

KEYWORD

meta (see left/right), links, keyword

AUTHOR

Aaron David Fairbanks

    page 1

Welcome | Solve | Browse | Lookup | Recent | Links | Register | Contact
Contribute | Keywords | Concepts | Worlds | Ambiguities | Transformations | Invalid Problems | Style Guide | Goals | Glossary