Search: keyword:abstract
|
|
BP954 |
| Solution could appear in a Bongard Problem that has itself as a panel vs. not so. |
|
| |
|
|
COMMENTS
|
Loosely speaking, examples on the left are "Bongard Problems that can be self-similar". However, Bongard Problems with images of themselves deeply nested in boxes or rotated/flipped are not here considered "self-similar"; the Bongard Problem must use itself, as-is (allowing downward scaling and allowing infinite detail, ignoring pixelation--see keyword infinitedetail), as a panel.
Bongard Problems fitting left evidently come in three categories: 1) the Bongard Problem could only appear on its own left side, 2) the Bongard Problem could appear on its own right side, or 3) the Bongard Problem could appear on its own left or the right side. See BP987.
Meta Bongard Problems appearing in BP793 that are presentationinvariant necessarily fit left here.
All examples here are in the conventional format, i.e. white background, black vertical dividing line, and examples in boxes on either side. (A more general version of this Bongard Problem might allow many formats of Bongard Problems, sorting an image left if a self-similar version is possible having the same solution and format. This more general version would no longer be tagged presentationinvariant, since sorting would not only depend on solution, but also format.)
It would hint at the solution (keyword help) to only include images of Bongard Problems that, as it stands, are already clearly categorized on one side by themselves. (That is, images of Bongard Problems that belong on one of the two sides of BP793.) It is tricky to come up with images that are categorized by themselves as it stands but that could NOT be recursively included within themselves. EX7967, EX7999, EX7995, and EX6574 are some examples. |
|
CROSSREFS
|
See BP987 which narrows down the left-hand side of this BP further based on whether or not the BP could contain itself as a panel on both sides.
Adjacent-numbered pages:
BP949 BP950 BP951 BP952 BP953  *  BP955 BP956 BP957 BP958 BP959
|
|
KEYWORD
|
hard, abstract, challenge, meta (see left/right), miniproblems, infinitedetail, presentationinvariant, visualimagination
|
|
CONCEPT
|
fractal (info | search), recursion (info | search), self-reference (info | search)
|
|
AUTHOR
|
Leo Crabbe
|
|
|
|
|
BP955 |
| Images of Bongard Problems that sort an image of their left side on their left and an image of their right side on their left vs. images of Bongard Problems that sort an image of their left side on their right and an image of their right side on their right. |
|
| |
|
|
CROSSREFS
|
See also BP957 for the other two evident possibilities.
Adjacent-numbered pages:
BP950 BP951 BP952 BP953 BP954  *  BP956 BP957 BP958 BP959 BP960
|
|
KEYWORD
|
abstract, dual, handed, leftright, solved, meta (see left/right), miniproblems, creativeexamples, assumesfamiliarity, structure, experimental
|
|
CONCEPT
|
self-reference (info | search)
|
|
WORLD
|
oblong_boxes_bpimage_sorts_both_sides_skewed [smaller | same | bigger] zoom in left (oblong_boxes_bpimage_sorts_both_sides_left) | zoom in right (oblong_boxes_bpimage_sorts_both_sides_right)
|
|
AUTHOR
|
Leo Crabbe
|
|
|
|
|
BP957 |
| Images of Bongard Problems that sort an image of their left side on their left and an image of their right side on their right vs. images of Bongard Problems that sort an image of their left side on their right and an image of their right side on their left. |
|
| |
|
|
|
|
|
BP978 |
| Bongard Problems in which all examples have a high amount of information that a person must unpack in order to sort them vs. Bongard Problems in which all examples have a low amount of information that a person must unpack in order to sort them. |
|
| |
|
|
COMMENTS
|
Left examples have the keyword "infodense" on the OEBP.
Consider the amount of data a person has to consciously unpack in each example in the process of determining how it should be sorted. In BP3, it is only necessary to notice the color of the shape. In BP871, however, it is important to read various qualities of every tiny shape shown.
Images of Bongard Problems that are "infodense" typically need to include a large number of examples in order to communicate the solution clearly without admitting unintended solutions. With so much data packed in each example, it becomes more likely that some of the random patterns in the data will happen to distinguish between the two sides in an unintended way. A similar issue appears in convoluted Bongard Problems.
Contrast "infodense" Problems to hardsort Bongard Problems, in which examples are difficult to sort, but perhaps that difficulty does not stem from reading a high amount of information; perhaps there is a small amount of information extracted from the examples, but it is hard to determine whether or not that information fits a rule. |
|
CROSSREFS
|
Adjacent-numbered pages:
BP973 BP974 BP975 BP976 BP977  *  BP979 BP980 BP981 BP982 BP983
|
|
KEYWORD
|
abstract, spectrum, meta (see left/right), links, keyword
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
|
BP987 |
| Solution could appear in a Bongard Problem featuring an image of itself on either of its sides vs. solution can appear in a Bongard Problem featuring an image of itself on a certain side only. |
|
| |
|
|
COMMENTS
|
All examples are Bongard Problems fitting left in BP954.
This is very close to BP927, specialized to Bongard Problems fitting left in BP954. The difference is that a Bongard Problem solution would fit left in BP927 but right here if it can sort images of it on both sides, but it is impossible to make an image of it fractally including itself on a certain side. An example is EX7997.
Meta Bongard Problems appearing in BP793 that are presentationinvariant necessarily fit right here. |
|
CROSSREFS
|
Adjacent-numbered pages:
BP982 BP983 BP984 BP985 BP986  *  BP988 BP989 BP990 BP991 BP992
|
|
KEYWORD
|
abstract, meta (see left/right), miniproblems, creativeexamples, assumesfamiliarity, structure, presentationinvariant, visualimagination
|
|
CONCEPT
|
fractal (info | search), recursion (info | search), self-reference (info | search)
|
|
AUTHOR
|
Leo Crabbe
|
|
|
|
|
BP999 |
| The collection of collections obeys the same rule as the individual collections vs. it does not. |
|
| |
|
|
COMMENTS
|
Rhetorical question: Where would the collection of left examples of this Bongard Problem be sorted by this Bongard Problem? (The question is whether these examples considered together satisfy the pattern that all the parts do, namely that the whole satisfies the pattern that all the parts do.)
See BP793 and BP1004 for similar paradoxes. |
|
CROSSREFS
|
See BP1005 for the version about only numerical properties; examples in that BP would be sorted the same way here that they are there.
See BP1003 for a similar idea. Rather than the collection of collections imitating the individual collections, BP1003 is about the total combined collection imitating the individual collections. A picture showing (for example) an odd number of even-numbered groups would be sorted differently by these two BPs.
Also see BP1004, which is likewise about the whole satisfying the same rule as its parts, but there the parts don't themselves have to be collections; there the parts are just plain individual objects. The panels in BP999 (this BP) should be sorted the same way in BP1004.
See BP1002, which is about only visual self-similarity instead of more general conceptual "self-similarity".
Adjacent-numbered pages:
BP994 BP995 BP996 BP997 BP998  *  BP1000 BP1001 BP1002 BP1003 BP1004
|
|
KEYWORD
|
nice, abstract, creativeexamples, left-narrow, rules, miniworlds
|
|
CONCEPT
|
recursion (info | search), self-reference (info | search)
|
|
WORLD
|
[smaller | same | bigger] zoom in left | zoom in right
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
|
BP1002 |
| Vaguely self-similar (looks like self-similar fractal after one iteration) vs. not so. |
|
| |
|
|
CROSSREFS
|
See BP1004 for a Problem about conceptual self-similarity instead of visual self-similarity.
See BP188 for a similar Problem restricted to shape outlines made of shape outlines.
Adjacent-numbered pages:
BP997 BP998 BP999 BP1000 BP1001  *  BP1003 BP1004 BP1005 BP1006 BP1007
|
|
KEYWORD
|
easy, nice, fuzzy, abstract, anticomputer, concept, traditional
|
|
CONCEPT
|
fractal (info | search), recursion (info | search), self-reference (info | search), similar_shape (info | search), similar (info | search)
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
|
BP1003 |
| The combined collection obeys the same rule as the sub-collections vs. not so. |
|
| |
|
|
COMMENTS
|
Since it is most intuitive to imagine spatially squishing together all the collections in the process of combining them into one big collection, avoid rules that involve relative spatial positionings of objects. |
|
CROSSREFS
|
Contrast BP999, which is very similar. There, when considering the whole picture, the collections are to be treated as individual objects; here, when considering the whole picture, the collections are to be combined into one big collection. A picture showing (for example) an odd number of even-numbered groups would be sorted differently by these two BPs.
Also contrast BP1004, which is about a collection of plain objects obeying the same rule as all the objects (instead of a collection of [collections of objects] obeying the same rule as all the [collections of objects]).
See BP1006 for the version with only number-based properties. All panels in that Bongard Problem fit the same way in this Bongard Problem as well.
Adjacent-numbered pages:
BP998 BP999 BP1000 BP1001 BP1002  *  BP1004 BP1005 BP1006 BP1007 BP1008
|
|
KEYWORD
|
nice, abstract, notso, creativeexamples, rules, miniworlds
|
|
CONCEPT
|
recursion (info | search), self-reference (info | search)
|
|
WORLD
|
[smaller | same | bigger]
|
|
AUTHOR
|
Leo Crabbe, Aaron David Fairbanks
|
|
| |
|
|
|
|
|
|
|
|