Search: all:new
|
|
BP929 |
| Bongard Problems about sequences of arbitrary length vs. Bongard Problems about sequences in which all examples have the same sequence length. |
|
| |
|
|
|
|
|
BP928 |
| Bongard Problems about sequences vs. other Bongard Problems. |
|
| |
|
|
|
|
|
BP927 |
| Image of Bongard Problem whose self-sorting depends on examples in it vs. image of Bongard Problem that will sort any Bongard Problem with its solution on either its left or right regardless of examples chosen. |
|
| ?
| ?
|
|
|
|
COMMENTS
|
All examples are Bongard Problems fitting left or right in BP793.
All examples here are in the conventional format, i.e. white background, black vertical dividing line, and examples in boxes on either side.
Border cases are Bongard Problems that always self-sort one way given their particular visual format (e.g. fixed number of boxes), but self-sort a different way in another slightly different format.
Meta Bongard Problems appearing in BP793 that are presentationinvariant necessarily fit right here.
It is interesting to think about how this Bongard Problem sorts itself. The only self-consistent answer is that it fits right. |
|
CROSSREFS
|
See BP793 "sorts self left vs. sorts self right".
See BP944 "sorts every BP on one side vs. doesn't".
Adjacent-numbered pages:
BP922 BP923 BP924 BP925 BP926  *  BP928 BP929 BP930 BP931 BP932
|
|
KEYWORD
|
hard, solved, presentationinvariant, visualimagination
|
|
WORLD
|
boxes_bpimage_sorts_self [smaller | same | bigger] zoom in left (boxes_bpimage_sorts_self_incarnation_dependent) | zoom in right
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
|
BP926 |
| Numbers of dots in ascending order from left to right vs. numbers of dots neither in ascending nor descending order from left to right. |
|
| |
|
|
|
|
|
BP925 |
| The numbers of dots differ by three vs. not so. |
|
| |
|
|
|
|
|
BP924 |
| Polygons where all sides are different lengths vs. Polygons where not all sides are different lengths. |
|
| |
|
|
COMMENTS
|
All examples in this Problem are outlines of convex polygons.
This is a generalisation of scalene triangles to any polygon. |
|
CROSSREFS
|
The left side implies the right side of BP329 (regular vs. irregular polygons), but the converse is not true.
The left side of BP329 implies the right side, but the converse is not true.
Adjacent-numbered pages:
BP919 BP920 BP921 BP922 BP923  *  BP925 BP926 BP927 BP928 BP929
|
|
EXAMPLE
|
Any scalene triangle will fit on the left, because no two sides are equal.
However, any regular polygon will not fit on the left, because all of its sides are equal.
A random convex polygon will "almost surely" fit on the left. |
|
KEYWORD
|
nice, stretch, right-narrow, traditional
|
|
CONCEPT
|
all (info | search)
|
|
WORLD
|
polygon_outline [smaller | same | bigger]
|
|
AUTHOR
|
Jago Collins
|
|
|
|
|
BP923 |
| Bongard Problem with solution relating to concept: permutation vs. Bongard Problem unrelated to this concept. |
|
| |
|
|
|
|
|
BP922 |
| One row is rearranged to make the other by swapping an odd number of object pairs vs. one row is rearranged to make the other by swapping an even number of object pairs. |
|
| |
|
|
|
|
|
BP921 |
| Bongard Problem with solution relating to concept: gravity vs. Bongard Problem unrelated to this concept. |
|
| |
|
|
|
|
|
| |
|
|
COMMENTS
|
A spot-the-difference exercise.
Arguably invalid (solution not simple). |
|
CROSSREFS
|
Adjacent-numbered pages:
BP915 BP916 BP917 BP918 BP919  *  BP921 BP922 BP923 BP924 BP925
|
|
KEYWORD
|
less, precise, convoluted, arbitrary, stretch, unstable, left-finite, left-full, perfect, pixelperfect, experimental, funny
|
|
CONCEPT
|
imperfection_small (info | search), specificity (info | search)
|
|
WORLD
|
bmp [smaller | same | bigger]
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
Welcome |
Solve |
Browse |
Lookup |
Recent |
Links |
Register |
Contact
Contribute |
Keywords |
Concepts |
Worlds |
Ambiguities |
Transformations |
Invalid Problems |
Style Guide |
Goals |
Glossary
|
|
|
|
|
|
|
|
|
|