Search: all
|
|
BP547 |
| Meta Meta Bongard Problems vs. other Bongard Problems. |
|
| |
|
|
|
|
|
BP549 |
| Bongard Problems with simple solutions vs. Bongard Problems with convoluted solutions. |
|
| |
|
|
COMMENTS
|
Right examples have the keyword "convoluted" on the OEBP.
Images of Bongard Problems with convoluted solutions often admit many alternative solutions of similar complexity. In order for one particular convoluted solution to be the simplest solution, it is often necessary to include a large number of examples. A similar issue appears in infodense Bongard Problems.
When a Bongard Problem is too convoluted, a person might find the intended answer but discount it because it seems too convoluted. A solution to a Bongard Problem is unambiguous when it is the least convoluted option by a large margin. |
|
CROSSREFS
|
Related to arbitrary.
See BP374 for simple vs. complicated drawings.
Adjacent-numbered pages:
BP544 BP545 BP546 BP547 BP548  *  BP550 BP551 BP552 BP553 BP554
|
|
KEYWORD
|
meta (see left/right), links, keyword
|
|
WORLD
|
bp [smaller | same | bigger]
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
|
BP550 |
| Experimental Bongard Problems vs. traditional-style Bongard Problems. |
|
| |
|
|
COMMENTS
|
Left examples have the keyword "experimental" on the OEBP.
Right examples have the keyword "traditional" on the OEBP.
Experimental BPs push the boundaries of what makes Bongard Problems Bongard Problems.
Traditional BPs show some simple property of black and white pictures. The OEBP is a place with many wild and absurd Bongard Problems, so it is useful to have an easy way to just find the regular old Bongard Problems. |
|
CROSSREFS
|
Adjacent-numbered pages:
BP545 BP546 BP547 BP548 BP549  *  BP551 BP552 BP553 BP554 BP555
|
|
KEYWORD
|
subjective, meta (see left/right), links, keyword, left-it
|
|
WORLD
|
bp [smaller | same | bigger]
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
|
BP552 |
| Orientation-dependent Bongard Problems vs. orientation-independent visual Bongard Problems. |
|
| |
|
|
COMMENTS
|
Left examples have the keyword "handed" on the OEBP.
If mirroring any example along the any axis can change its sorting the BP is "handed."
Note that BPs about comparing orientation between multiple things in one example fit on the right side. |
|
CROSSREFS
|
See BP871 for the version with pictures of Bongard Problems (miniproblems) instead of links to pages on the OEBP.
The keyword leftright is specifically about flipping over the vertical axis, while the keyword updown is specifically about flipping over the horizontal axis.
Bongard Problems tagged rotate are usually "handed", since any rotation can be created by two reflections. Not necessarily, however, since the reflected step in between might not be sorted on either side by the Bongard Problem.
Adjacent-numbered pages:
BP547 BP548 BP549 BP550 BP551  *  BP553 BP554 BP555 BP556 BP557
|
|
KEYWORD
|
meta (see left/right), links, keyword, invariance, wellfounded
|
|
WORLD
|
visualbp [smaller | same | bigger] zoom in left (handed_visualbp)
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
|
BP553 |
| Rotation-dependent Bongard Problems vs. rotation-independent visual Bongard Problems. |
|
| |
|
|
|
|
|
BP554 |
| Size-dependent Bongard Problems vs. size-independent visual Bongard Problems. |
|
| |
|
|
|
|
|
BP556 |
| Visual Bongard Problems such that if black and white are switched some examples switch sides vs. visual Bongard Problems that would always sort two switched versions the same way. |
|
| |
|
|
|
|
|
BP561 |
| Meta Bongard Problems fitting in their own world vs. other meta Bongard Problems. |
|
| |
|
|
|
|
|
BP563 |
| Bongard Problems such that there is a way of making an infinite list of all relevant possible left-sorted examples vs. Bongard Problems where there is no such way of listing all left-sorted examples. |
|
| |
|
|
COMMENTS
|
Left-sorted Problems have the keyword "left-listable" on the OEBP.
All the possible left examples for the BPs on the left side of this problem could be listed in one infinite sequence. Right examples here are Problems for which no such sequence can exist.
This depends on deciding what images should be considered "the same thing", which is subjective and context-dependent.
All examples in this Bongard Problem have an infinite left side (they do not have the keyword left-finite).
The mathematical term for a set that can be organized into an infinite list is a "countably infinite" set, as opposed to an "uncountably infinite" set.
Another related idea is a "recursively enumerable" a.k.a. "semi-decidable" set, which is a set that a computer program could list the members of.
The keyword "left-listable" is meant to be for the more general idea of a countable set, which does not have to do with computer algorithms.
Note that this is not just BP940 (right-listable) flipped.
It seems in practice, Bongard Problems that are left-listable are usually also right-listable because the whole class of relevant examples is listable. A keyword for just plain "listable" may be more useful. Or instead keywords for left- versus right- semidecidability, in the sense of computing. - Aaron David Fairbanks, Jan 10 2023 |
|
REFERENCE
|
https://en.wikipedia.org/wiki/Countable_set |
|
CROSSREFS
|
See left-finite, which distinguishes between a finite left side and infinite left side.
"Left-listable" BPs are typically precise.
Adjacent-numbered pages:
BP558 BP559 BP560 BP561 BP562  *  BP564 BP565 BP566 BP567 BP568
|
|
KEYWORD
|
math, meta (see left/right), links, keyword
|
|
WORLD
|
bp_infinite_left_examples [smaller | same | bigger] zoom in right (left_uncountable_bp)
|
|
AUTHOR
|
Leo Crabbe
|
|
|
|
|
BP565 |
| Bongard Problems that are hard for humans to solve but easier for computers to solve vs. Bongard Problems that are hard for computers to solve but easier for humans to solve. |
|
| |
|
|
|
|
Welcome |
Solve |
Browse |
Lookup |
Recent |
Links |
Register |
Contact
Contribute |
Keywords |
Concepts |
Worlds |
Ambiguities |
Transformations |
Invalid Problems |
Style Guide |
Goals |
Glossary
|
|
|
|
|
|
|
|
|
|