Search: all:new
|
|
Sort:
recent
Format:
long
Filter:
(all | no meta | meta)
Mode:
(words | no words)
|
|
|
|
|
BP925 |
| The numbers of dots differ by three vs. not so. |
|
| |
|
|
|
|
|
BP924 |
| Polygons where all sides are different lengths vs. Polygons where not all sides are different lengths. |
|
| |
|
|
COMMENTS
|
All examples in this Problem are outlines of convex polygons.
This is a generalisation of scalene triangles to any polygon. |
|
CROSSREFS
|
The left side implies the right side of BP329 (regular vs. irregular polygons), but the converse is not true.
The left side of BP329 implies the right side, but the converse is not true.
Adjacent-numbered pages:
BP919 BP920 BP921 BP922 BP923  *  BP925 BP926 BP927 BP928 BP929
|
|
EXAMPLE
|
Any scalene triangle will fit on the left, because no two sides are equal.
However, any regular polygon will not fit on the left, because all of its sides are equal.
A random convex polygon will "almost surely" fit on the left. |
|
KEYWORD
|
nice, stretch, right-narrow, traditional
|
|
CONCEPT
|
all (info | search)
|
|
WORLD
|
polygon_outline [smaller | same | bigger]
|
|
AUTHOR
|
Jago Collins
|
|
|
|
|
BP922 |
| One row is rearranged to make the other by swapping an odd number of object pairs vs. one row is rearranged to make the other by swapping an even number of object pairs. |
|
| |
|
|
|
|
|
| |
|
|
COMMENTS
|
A spot-the-difference exercise.
Arguably invalid (solution not simple). |
|
CROSSREFS
|
Adjacent-numbered pages:
BP915 BP916 BP917 BP918 BP919  *  BP921 BP922 BP923 BP924 BP925
|
|
KEYWORD
|
less, precise, convoluted, arbitrary, stretch, unstable, left-finite, left-full, perfect, pixelperfect, experimental, funny
|
|
CONCEPT
|
imperfection_small (info | search), specificity (info | search)
|
|
WORLD
|
bmp [smaller | same | bigger]
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
|
|
|
BP917 |
| Reversible transformations vs. non-reversible transformations. |
|
| |
|
|
|
|
|
BP915 |
| Finite number of dots vs. infinite number of dots. |
|
| |
|
|
|
|
|
BP912 |
| Imperfectly drawn shapes vs. perfectly drawn shapes. |
|
| |
|
|
|
|
|
BP911 |
| Red shape vs. blue shape. |
|
| |
|
|
| |
|
|
|
|
|
|
|
|