Search: concept:convey_enough_information
|
Displaying 1-5 of 5 results found.
|
page 1
|
|
Sort:
id
Format:
long
Filter:
(all | no meta | meta)
Mode:
(words | no words)
|
|
|
|
|
BP383 |
| When the shape is removed from the dots, the dots give enough information to place the shape back where it was vs. not so. |
|
| |
|
|
|
|
|
BP917 |
| Reversible transformations vs. non-reversible transformations. |
|
| |
|
|
|
|
|
BP979 |
| It is possible to deduce the contents of the missing square vs. not so. |
|
| ?
|
|
|
|
COMMENTS
|
All examples show grids of squares with an image in each square, such that there is some "rule" the images within the grid obey. The "rule" can be about how the images relate to their neighbors, it can involve the position of the images in the grid, and it can involve properties of the grid considered as a whole. One square from somewhere along the edge of the grid is removed.
Intentionally left out of this Problem (shown above sorted ambiguously) are cases in which the rule is not possible to deduce without seeing more squares. Due to this choice to omit those kinds of examples from the right, another acceptable solution is "it is possible to deduce the contents of the missing square once the underlying rule is understood vs. not so." |
|
REFERENCE
|
https://en.wikipedia.org/wiki/Raven%27s_Progressive_Matrices |
|
CROSSREFS
|
BP1258 is very similar: whether ALL squares can be deduced from the rest.
Adjacent-numbered pages:
BP974 BP975 BP976 BP977 BP978  *  BP980 BP981 BP982 BP983 BP984
|
|
KEYWORD
|
nice, notso, structure, rules, miniworlds
|
|
CONCEPT
|
convey_enough_information (info | search), choice (info | search)
|
|
WORLD
|
grid_of_images_with_rule_one_on_edge_missing [smaller | same | bigger]
|
|
AUTHOR
|
Aaron David Fairbanks
|
|
| |
|
|
|