login
Hints
(Greetings from The On-Line Encyclopedia of Bongard Problems!)
Search: +ex:BP973
Displaying 1-3 of 3 results found.     page 1
     Sort: id      Format: long      Filter: (all | no meta | meta)      Mode: (words | no words)
BP976 Bongard Problems that use color in their examples vs. black and white Bongard Problems.
BP844
BP911
BP973
BP975
BP1202
(edit; present; nest [left/right]; search; history)
COMMENTS

Left examples have the keyword "color" on the OEBP.

CROSSREFS

Adjacent-numbered pages:
BP971 BP972 BP973 BP974 BP975  *  BP977 BP978 BP979 BP980 BP981

KEYWORD

meta (see left/right), links, keyword, wellfounded

WORLD

visualbp [smaller | same | bigger]

AUTHOR

Leo Crabbe

BP978 Bongard Problems in which all examples have a high amount of information that a person must unpack in order to sort them vs. Bongard Problems in which all examples have a low amount of information that a person must unpack in order to sort them.
BP871
BP973
BP975
BP998
BP1153
BP3
(edit; present; nest [left/right]; search; history)
COMMENTS

Left examples have the keyword "infodense" on the OEBP.


Consider the amount of data a person has to consciously unpack in each example in the process of determining how it should be sorted. In BP3, it is only necessary to notice the color of the shape. In BP871, however, it is important to read various qualities of every tiny shape shown.


Images of Bongard Problems that are "infodense" typically need to include a large number of examples in order to communicate the solution clearly without admitting unintended solutions. With so much data packed in each example, it becomes more likely that some of the random patterns in the data will happen to distinguish between the two sides in an unintended way. A similar issue appears in convoluted Bongard Problems.


Contrast "infodense" Problems to hardsort Bongard Problems, in which examples are difficult to sort, but perhaps that difficulty does not stem from reading a high amount of information; perhaps there is a small amount of information extracted from the examples, but it is hard to determine whether or not that information fits a rule.

CROSSREFS

Adjacent-numbered pages:
BP973 BP974 BP975 BP976 BP977  *  BP979 BP980 BP981 BP982 BP983

KEYWORD

abstract, spectrum, meta (see left/right), links, keyword

AUTHOR

Aaron David Fairbanks

BP1158 Bongard Problems in which each example communicates a rule vs. other Bongard Problems.
BP346
BP349
BP350
BP351
BP352
BP353
BP354
BP355
BP356
BP357
BP361
BP362
BP365
BP372
BP379
BP380
BP393
BP792
BP805
BP839
BP841
BP843
BP845
BP846
BP848
BP849
BP852
BP855
BP870
BP893
BP917
BP951
BP973
BP975
BP979

. . .

?
BP347
(edit; present; nest [left/right]; search; history)
COMMENTS

Left-sorted Bongard Problems have the keyword "rules" on the OEBP.


In the typical "rules" Bongard Problem, it is possible to come up with many convoluted rules that fit each example, but the intended interpretation is the only simple and obvious one.


Since it is difficult to communicate a rule with little detail, "rules" Bongard Problems are usually infodense.

Typically, each example is itself a bunch of smaller examples that all obey the rule. It is the same as how a Bongard Problems relies on many examples to communicate rules; it likely wouldn't get the answer across with just one example.

Often, each rule is communicated just by showing some examples of things satisfying it placed next to each other. (See keywords left-narrow and right-narrow.) Contrast Bongard Problems, which are more communicative, by showing some examples satisfying the rule and some examples NOT satisfying the rule.

BP1157 is an example of a "rules" Bongard Problem in which each intended rule is communicated by just one example of its application; these rules have to be particularly simple and intuitive, and the individual examples have to be complicated enough to communicate them.


A "rules" Bongard Problem is often collective. Some examples may admit multiple equally plausible rules, and the correct interpretation of each example only becomes clear once the solution is known. The group of examples together improve the solver's confidence about having understood each individual one right.

It is common that there will be one or two examples with multiple reasonable interpretations due to oversight of the author.

CROSSREFS

All meta Bongard Problems are "rules" Bongard Problems.

Many of the other Bongard-Problem-like structures seen on the OEBP are also about recognizing a pattern. (See keyword structure.)


"Rules" Bongard Problems are abstract, although the individual rules in them may not be abstract. "Rules" Bongard Problems also usually have the keyword creativeexamples.

Adjacent-numbered pages:
BP1153 BP1154 BP1155 BP1156 BP1157  *  BP1159 BP1160 BP1161 BP1162 BP1163

KEYWORD

fuzzy, meta (see left/right), links, keyword, left-self, rules

AUTHOR

Aaron David Fairbanks

    page 1

Welcome | Solve | Browse | Lookup | Recent | Links | Register | Contact
Contribute | Keywords | Concepts | Worlds | Ambiguities | Transformations | Invalid Problems | Style Guide | Goals | Glossary